Механическая энергия и ее виды. Полная механическая энергия системы Что называется полной энергией системы тел

Энергия. Закон сохранения полной механической энергии (повторяем понятия).

Энергия - это скалярная физическая величина которая является мерой различных форм движения материи и является характеристикой состояния системы (тела) и определяет максимальную работу, которую может выполнить тело (система).

Тела обладают энергией:

1. кинетической энергией - вследствие движения массивного тела

2. потенциальной энергией - в результате взаимодействия с другими телами, полями;

3. тепловой (внутренней) энергией - вследствие хаотического движения и взаимодействия своих молекул, атомов, электронов...

Полную механическую энергию составляют кинетическая и потенциальная энергия.

Кинетическая энергия - энергия движения.

Кинетическая энергия массивного тела m, которое движется поступательно со скоростью v ищут по формуле:

Ек = К = mv2 / 2 = p2 / (2m)

где р = mv - количество движения или импульс тела.

Кинетическая энергия системы n массивных тел

где Ки - кинетическая энергия i-го тела.

Значение кинетической энергии материальной точки или тела зависит от выбора системы отсчета, но не может быть отрицательной:

Теорема о кинетической энергии:

Изменение? К кинетической энергии тела при его переходе из одного положения в другое равно работе А всех сил, действующих на тело:

А =? К = К2 - К1.

Кинетическая энергия массивного тела с моментом инерции J которое вращается с угловой скоростью ω ищут по формуле:

Коб = Jω2 / 2 = L2 / (2J)

где L = Jω - момент количества движения (или момент импульса) тела.

Полную кинетическую энергию тела которое движется одновременно поступательно и вращательно ищут по формуле:

К = mv2 / 2 + Jω2 / 2.

Потенциальная энергия - энергия взаимодействия.

Потенциальной называют часть механической энергии, которая зависит от взаимного расположения тел в системе и их положение во внешнем силовом поле.

Потенциальная энергия тела в однородном поле тяготения Земли (у поверхности, g = const):

(*) - Это энергия взаимодействия тела с Землей;

Это работа силы тяжести при опускании тела на нулевой уровень.

Значение П = mgH может быть положительным, отрицательным в зависимости от выбора системы отсчета.

Потенциальная энергия упруго деформированного тела (пружины).

П = КХ2 / 2: - это энергия взаимодействия частиц тела;

Это работа силы упругости при переходе в состояние, когда деформация равна нулю.

Потенциальная энергия тела в гравитационном поле другого тела.

П = - G m1m2 / R - потенциальная энергия тела m2 в гравитационном поле тела m1 - где G - гравитационная постоянная, R - расстояние между центрами взаимодействующих тел.

Теорема о потенциальной энергии:

Работа А потенциальных сил равна изменению? П потенциальной энергии системы, при переходе из начального состояния в конечное, взятой с обратным знаком:

А = -? П = - (П2 - П1).

Основное свойство потенциальной энергии:

В состоянии равновесия потенциальная энергия принимает минимальное значение.

Закон сохранения полной механической энергии.

1. Система замкнутая, консервативная.

Механическая энергия консервативной системы тел остается постоянной в процессе движения системы:

Е = К + П = const.

2. Система замкнутая, неконсервативной.

Если система взаимодействующих тел замкнутая но неконсервативной, то ее механическая энергия не сохраняется. Закон изменения полной механической энергии говорит:

Изменение механической энергии такой системы равна работе внутренних непотенциальные сил:

Примером такой системы является система, в которой присутствуют силы трения. Для такой системы справедливо закон сохранения полной энергии:

3. Система незамкнутая, неконсервативной.

Если система взаимодействующих тел незамкнутая и неконсервативных, то ее механическая энергия не сохраняется. Закон изменения полной механической энергии говорит:

Изменение механической энергии такой системы равна суммарной работе внутренних и внешних непотенциальные сил:

При этом изменяется внутренняя энергия системы.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергии.

Полную механическую энергию рассматривают в тех случаях, когда действует закон сохранения энергии и она остаётся постоянной.

Если на движение тела не оказывают влияния внешние силы, например, нет взаимодействия с другими телами, нет силы трения или силы сопротивления движению, тогда полная механическая энергия тела остаётся неизменной во времени.

E пот + E кин = const

Разумеется, что в повседневной жизни не существует идеальной ситуации, в которой тело полностью сохраняло бы свою энергию, так как любое тело вокруг нас взаимодействует хотя бы с молекулами воздуха и сталкивается с сопротивлением воздуха. Но, если сила сопротивления очень мала и движение рассматривается в относительно коротком промежутке времени, тогда такую ситуацию можно приближённо считать теоретически идеальной.

Закон сохранения полной механической энергии обычно применяют при рассмотрении свободного падения тела, при его вертикальном подбрасывании или в случае колебаний тела.

Пример:

При вертикальном подбрасывании тела его полная механическая энергия не меняется, а кинетическая энергия тела переходит в потенциальную и наоборот.

Преобразование энергии отображено на рисунке и в таблице.

Точка нахождения тела

Потенциальная энергия

Кинетическая энергия

Полная механическая энергия

E пот = m ⋅ g ⋅ h (max)

E полная = m ⋅ g ⋅ h

2) Средняя

(h = средняя)

E пот = m ⋅ g ⋅ h

E кин = m ⋅ v 2 2

E полная = m ⋅ v 2 2 + m ⋅ g ⋅ h

E кин = m ⋅ v 2 2 (max)

E полная = m ⋅ v 2 2

Исходя из того, что в начале движения величина кинетической энергии тела одинакова с величиной его потенциальной энергии в верхней точке траектории движения, для расчётов могут быть использованы ещё две формулы.

Если известна максимальная высота, на которую поднимается тело, тогда можно определить максимальную скорость движения по формуле:

v max = 2 ⋅ g ⋅ h max .

Если известна максимальная скорость движения тела, тогда можно определить максимальную высоту, на которую поднимается тело, брошенное вверх, по такой формуле:

h max = v max 2 2 g .

Чтобы отобразить преобразование энергии графически, можно использовать имитацию «Энергия в скейт-парке », в которой человек, катающийся на роликовой доске (скейтер) перемещается по рампе. Чтобы изобразить идеальный случай, предполагается, что не происходит потерь энергии в связи с трением. На рисунке показана рампа со скейтером, и далее на графике показана зависимость механической энергии от места положения скейтера на траектории.

На графике синей пунктирной линией показано изменение потенциальной энергии. В средней точке рампы потенциальная энергия равна \(нулю\). Зелёной пунктирной линией показано изменение кинетической энергии. В верхних точках рампы кинетическая энергия равна \(нулю\). Жёлто-зелёная линия изображает полную механическую энергию - сумму потенциальной и кинетической - в каждый момент движения и в каждой точке траектории. Как видно, она остаётся \(неизменной\) во всё время движения. Частота точек характеризует скорость движения - чем дальше точки расположены друг от друга, тем больше скорость движения.

Системой частиц может быть любое тело, газ, механизм, Солнечная система и т. д.

Кинетическая энергия системы частиц, как упоминалось выше, определяется суммой кинетических энергий частиц, входящих в данную систему.

Потенциальная энергия системы складывается из собственной потенциальной энергии частиц системы, и потенциальной энергии системы во внешнем поле потенциальных сил .

Собственная потенциальная энергия обусловлена взаимным расположением частиц, принадлежащих данной системе (т.е. ее конфигурацией), между которыми действуют потенциальные силы, а также взаимодействием между отдельными частями системы. Можно показать, что работа всех внутренних потенциальных сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы:

. (3.23)

Примерами собственной потенциальной энергии являются энергия межмолекулярного взаимодействия в газах и жидкостях, энергия электростатического взаимодействия неподвижных точечных зарядов. Примером внешней потенциальной энергии является энергия тела, поднятого над по­верхностью Земли, так как она обусловлена действием на тело пос­тоянной внешней потенциальной силы - силы тяжести.

Разделим силы, действующие на систему частиц, на внутренние и внешние, а внутренние - на потенциальные и непотенциальные. Представим (3.10) в виде

Перепишем (3.24) с учетом (3.23):

Величина, сумма кинетической и собственной по­тенциальной энергии системы, является полной механической эне­ргией системы . Перепишем (3.25) в виде:

т.е., приращение механической энергии системы равно алгебраической сумме работ всех внутренних непотенциальных сил и всех внешних сил.

Если в (3.26) положить A внешн =0 (это равенство означает, что система является замкнутой) и (что равносильно отсутствию внутренних непотенциальных сил), то получим:

Оба равенства (3.27) являются выражениями закона сохранения механической энергии : механическая энергия замкнутой системы частиц, в которой отсутствуют непотенциальные силы, сохраняется в процес­се движения, Такую систему называют консервативной. С достаточной степенью точности замкнутой консервативной системой можно считать Солнечную систему. При движении замкнутой консервативной си­стемы сохраняется полная механическая энергия, в то время как кинетическая и потенциальная энергия изме­няются. Однако эти изменения такие, что приращение одной из них в точности равно уменьшению другой.

Если замк­нутая система не является консервативной, т. е. в ней действуют непотенциальные силы, например, силы трения, то механическая энергия такой систе­мы, убывает, так как расходуется на работу против этих сил. Закон сохранения механической энергии является лишь отдельным проявлением существующего в природе универсального закона сохранения и превращения энер­гии: энергия никогда не создается и не уничтожается, она мо­жет только переходить из одной формы в другую или об­мениваться между отдельными частями материи. При этом понятие энергии расширяется введением понятий о новых формах ее кроме механической, - энергии электромагнитного поля, химической энергии, ядерной и др. Универсальный закон сохранения и превращения энер­гии охватыва­ет те физические явления, на которые законы Ньютона не распространяются. Этот закон имеет самостоятельное значение, так как получен на основе обобщений опытных фактов.


Пример 3.1 . Найти работу, совершаемую упругой силой, действующей на материальную точку вдоль некоторой оси х. Сила подчиняется закону , где х - смещение точки из начального положения (в котором.х=x 1), - единичный вектор в направлении оси х.

Найдем элементарную работу упругой силы при перемещении точки на величину dx. В формулу (3.1) для элементарной работы подставим выражение для силы:

.

Затем найдем работу силы, выполним интегрирование вдоль оси x в пределах от x 1 до x :

. (3.28)

Формулу (3.28) можно применить для определения потенциальной энергии сжатой или растянутой пружины, которая первоначально находится в свободном состоянии, т.е. x 1 =0 (коэффициент k называется коэффициеном жесткости пружины). Потенциальная энергия пружины при сжатии или растяжении равна работе против упругих сил, взятой с обратным знаком:

.

Пример 3.2 Применение теоремы об изменении кинетической энергии.

Найти минимальную скорость u, которую надо сообщить снаряду , чтобы он поднялся на высоту H над поверхностью Земли (сопротивлением атмосферного воздуха пренебречь ).

Направим ось координат от центра Земли по направлению полета снаряда. Начальная кинетическая энергия снаряда будет затрачена на работу против потенциальных сил гравитационного притяжения Земли. Формулу (3.10) с учетом формулы (3.3) можно представить в виде:

.

Здесь A – работа против силы гравитационного притяжения Земли (, g гравитационная постоянная, r – расстояние, отсчитываемое от центра Земли). Знак минус появляется из-за того, что проекция силы гравитационного притяжения на направление движения снаряда отрицательна. Интегрируя последнее выражение и учитывая, что T(R+H)=0, T(R) = mυ 2 /2 , получим:

Решив полученное уравнение относительно υ, найдем:

где - ускорение свободного падения на поверхности Земли.

Цель этой статьи - раскрыть сущность понятия «механическая энергия». Физика широко использует это понятие как практически, так и теоретически.

Работа и энергия

Механическую работу можно определить, если известны сила, действующая на тело, и перемещение тела. Существует и другой способ для расчета механической работы. Рассмотрим пример:

На рисунке изображено тело, которое может находиться в различных механических состояниях (I и II). Процесс перехода тела из состояния I в состояние II характеризуется механической работой, то есть при переходе из состояния I в состояние II тело может осуществить работу. При осуществлении работы меняется механическое состояние тела, а механическое состояние можно охарактеризовать одной физической величиной - энергией.

Энергия - это скалярная физическая величина всех форм движения материи и вариантов их взаимодействия.

Чему равна механическая энергия

Механической энергией называют скалярную физическую величину, которая определяет способность тела выполнять работу.

А = ∆Е

Поскольку энергия - это характеристика состояния системы в определенный момент времени, то работа - это характеристика процесса изменения состояния системы.

Энергия и работа обладают одинаковыми единицами измерения: [А] = [Е] = 1 Дж.

Виды механической энергии

Механическая свободная энергия делится на два вида: кинетическую и потенциальную.

Кинетическая энергия - это механическая энергия тела, которая определяется скоростью его движения.

Е k = 1/2mv 2

Кинетическая энергия присуща подвижным телам. Останавливаясь, они выполняют механическую работу.

В различных системах отсчета скорости одного и того же тела в произвольный момент времени могут быть разными. Поэтому кинетическая энергия - относительная величина, она обуславливается выбором системы отсчета.

Если на тело во время движения действует сила (или одновременно несколько сил), кинетическая энергия тела меняется: тело ускоряется или останавливается. При этом работа силы или работа равнодействующей всех сил, которые приложены к телу, будет равняться разнице кинетических энергий:

A = E k1 - E k 2 = ∆Е k

Этому утверждению и формуле дали название - теорема о кинетической энергии .

Потенциальной энергией именуют энергию, обусловленную взаимодействием между телами.

При падении тела массой m с высоты h сила притяжения выполняет работу. Поскольку работа и изменение энергии связаны уравнением, можно записать формулу для потенциальной энергии тела в поле силы тяжести :

E p = mgh

В отличие от кинетической энергии E k потенциальная E p может иметь отрицательное значение, когда h<0 (например, тело, лежащее на дне колодца).

Еще одним видом механической потенциальной энергии является энергия деформации. Сжатая на расстояние x пружина с жесткостью k имеет потенциальную энергию (энергию деформации):

E p = 1/2 kx 2

Энергия деформации нашла широкое применение на практике (игрушки), в технике - автоматы, реле и другие.

E = E p + E k

Полной механической энергией тела именуют сумму энергий: кинетической и потенциальной.

Закон сохранения механической энергии

Одни из самых точных опытов, которые провели в середине XIX века английский физик Джоуль и немецкий физик Майер, показали, что количество энергии в замкнутых системах остается неизменной. Она лишь переходит от одних тел к другим. Эти исследования помогли открыть закон сохранения энергии :

Полная механическая энергия изолированной системы тел остается постоянной при любых взаимодействиях тел между собой.

В отличие от импульса, который не имеет эквивалентной формы, энергия имеет много форм: механическую, тепловую, энергию молекулярного движения, электрическую энергию с силами взаимодействия зарядов и другие. Одна форма энергии может переходить в другую, например, в тепловую кинетическая энергия переходит в процессе торможения автомобиля. Если сил трения нет, и тепло не образуется, то полная механическая энергия не утрачивается, а остается постоянной в процессе движения или взаимодействия тел:

E = E p + E k = const

Когда действует сила трения между телами, тогда происходит уменьшение механической энергии, однако и в этом случае она не теряется бесследно, а переходит в тепловую (внутреннюю). Если над замкнутой системой выполняет работу внешняя сила, то происходит увеличение механической энергии на величину выполненной этой силой работы. Если же замкнутая система выполняет работу над внешними телами, тогда происходит сокращение механической энергии системы на величину выполненной ею работы.
Каждый вид энергии может превращаться полностью в произвольный иной вид энергии.

Механическая энергия системы существует в кинетическом и потенциальном виде. Кинетическая энергия появляется, когда объект или система начинает двигаться. Потенциальная энергия возникает при взаимодействии объектов или систем друг с другом. Она не появляется и не исчезает бесследно и, зачастую, не зависит от работы. Однако она может переходить из одной формы в другую.

Например, шар для боулинга, находясь на уровне трех метров над землей, не имеет кинетической энергии, потому что он не двигается. У него есть большое количество потенциальной энергии (в этом случае, гравитационной энергии), которая будет преобразована в кинетическую, если шар начнет падать.

Знакомство с различными видами энергии начинается в средних классах школы. Детям, как правило, легче визуализировать и легко понять принципы механических систем, не вдаваясь в подробности. Основные расчеты в таких случаях могут быть сделаны без использования сложных вычислений. В большинстве простых физических задач, механическая система остается замкнутой и факторы, которые уменьшают значение общей энергии системы, не принимаются во внимание.

Механическая, химическая и ядерная энергия системы

Существует множество различных видов энергии, и иногда, может быть, трудно правильно отличить один из них от другого. Химическая энергия, например, представляет собой результата взаимодействия молекул веществ между собой. Ядерная энергия появляется во время взаимодействия между частицами в ядре атома. Механическая энергия, в отличие от других, как правило, не учитывает молекулярный состав объекта и учитывает только их взаимодействие на макроскопическом уровне.

Это приближение предназначено для упрощения расчетов механической энергии сложных систем. Объекты в этих системах обычно рассматриваются в виде однородных тел, а не как сумма миллиардов молекул. Расчет как кинетической, так и потенциальной энергии одного объекта является простой задачей. Расчет тех же видов энергии для миллиардов молекул будет крайне затруднительным. Без упрощения деталей в механической системе, ученые должны были бы изучить отдельные атомы, а также все взаимодействия и силы, существующие между ними. Этот подход, как правило, применяется элементарных частиц.

Преобразование энергии

Механическая энергия может быть преобразована в другие виды энергии с использованием специального оборудования. Например, генераторы предназначены для превращения механической работы в электричество. Другие виды энергии также могут быть преобразованы в механическую энергию. Например, двигатель внутреннего сгорания в автомобиле преобразует химическую энергию топлива в механическую, используемую для движения.

2024 stekolniy.ru. В мире праздника.